EconPapers    
Economics at your fingertips  
 

Tomonaga–Luttinger liquid behavior and spinon confinement in YbAlO3

L. S. Wu (), S. E. Nikitin, Z. Wang, W. Zhu, C. D. Batista, A. M. Tsvelik, A. M. Samarakoon, D. A. Tennant, M. Brando, L. Vasylechko, M. Frontzek, A. T. Savici, G. Sala, G. Ehlers, A. D. Christianson, M. D. Lumsden and A. Podlesnyak ()
Additional contact information
L. S. Wu: Oak Ridge National Laboratory
S. E. Nikitin: Max Planck Institute for Chemical Physics of Solids
Z. Wang: The University of Tennessee
W. Zhu: Westlake Institute of Advanced Study
C. D. Batista: The University of Tennessee
A. M. Tsvelik: Brookhaven National Laboratory
A. M. Samarakoon: Oak Ridge National Laboratory
D. A. Tennant: Oak Ridge National Laboratory
M. Brando: Max Planck Institute for Chemical Physics of Solids
L. Vasylechko: Lviv Polytechnic National University
M. Frontzek: Oak Ridge National Laboratory
A. T. Savici: Oak Ridge National Laboratory
G. Sala: Oak Ridge National Laboratory
G. Ehlers: Oak Ridge National Laboratory
A. D. Christianson: Oak Ridge National Laboratory
M. D. Lumsden: Oak Ridge National Laboratory
A. Podlesnyak: Oak Ridge National Laboratory

Nature Communications, 2019, vol. 10, issue 1, 1-9

Abstract: Abstract Low dimensional quantum magnets are interesting because of the emerging collective behavior arising from strong quantum fluctuations. The one-dimensional (1D) S = 1/2 Heisenberg antiferromagnet is a paradigmatic example, whose low-energy excitations, known as spinons, carry fractional spin S = 1/2. These fractional modes can be reconfined by the application of a staggered magnetic field. Even though considerable progress has been made in the theoretical understanding of such magnets, experimental realizations of this low-dimensional physics are relatively rare. This is particularly true for rare-earth-based magnets because of the large effective spin anisotropy induced by the combination of strong spin–orbit coupling and crystal field splitting. Here, we demonstrate that the rare-earth perovskite YbAlO3 provides a realization of a quantum spin S = 1/2 chain material exhibiting both quantum critical Tomonaga–Luttinger liquid behavior and spinon confinement–deconfinement transitions in different regions of magnetic field–temperature phase diagram.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-08485-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08485-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-08485-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08485-7