EconPapers    
Economics at your fingertips  
 

Degenerate conic anchoring and colloidal elastic dipole-hexadecapole transformations

Ye Zhou (), Bohdan Senyuk, Rui Zhang, Ivan I. Smalyukh () and Juan J. de Pablo ()
Additional contact information
Ye Zhou: The University of Chicago
Bohdan Senyuk: University of Colorado
Rui Zhang: The University of Chicago
Ivan I. Smalyukh: University of Colorado
Juan J. de Pablo: The University of Chicago

Nature Communications, 2019, vol. 10, issue 1, 1-8

Abstract: Abstract The defect structure associated with a colloid in a nematic liquid crystal is dictated by molecular orientation at the colloid surface. Perpendicular or parallel orientations to the surface lead to dipole-like or quadrupole-like defect structures. However, the so-called elastic hexadecapole discovered recently, has been assumed to result from a conic anchoring condition. In order to understand it at a fundamental level, a model for this anchoring is introduced here in the context of a Landau-de Gennes free energy functional. We investigate the evolution of defect configurations, as well as colloidal interactions, by tuning the preferred tilt angle (θe). The model predicts an elastic dipole whose stability decreases as θe increases, along with a dipole-hexadecapole transformation, which are confirmed by our experimental observations. Taken together, our results suggest that previously unanticipated avenues may exist for design of self-assembled structures via control of tilt angle.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-08645-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08645-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-08645-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08645-9