EconPapers    
Economics at your fingertips  
 

Ti and its alloys as examples of cryogenic focused ion beam milling of environmentally-sensitive materials

Yanhong Chang (), Wenjun Lu, Julien Guénolé, Leigh T. Stephenson, Agnieszka Szczpaniak, Paraskevas Kontis, Abigail K. Ackerman, Felicity F. Dear, Isabelle Mouton, Xiankang Zhong, Siyuan Zhang, David Dye, Christian H. Liebscher, Dirk Ponge, Sandra Korte-Kerzel, Dierk Raabe and Baptiste Gault ()
Additional contact information
Yanhong Chang: Max Planck Institute für Eisenforschung GmbH
Wenjun Lu: Max Planck Institute für Eisenforschung GmbH
Julien Guénolé: Institute of Physical Metallurgy and Metal Physics, RWTH Aachen University
Leigh T. Stephenson: Max Planck Institute für Eisenforschung GmbH
Agnieszka Szczpaniak: Max Planck Institute für Eisenforschung GmbH
Paraskevas Kontis: Max Planck Institute für Eisenforschung GmbH
Abigail K. Ackerman: Imperial College
Felicity F. Dear: Imperial College
Isabelle Mouton: Max Planck Institute für Eisenforschung GmbH
Xiankang Zhong: Max Planck Institute für Eisenforschung GmbH
Siyuan Zhang: Max Planck Institute für Eisenforschung GmbH
David Dye: Imperial College
Christian H. Liebscher: Max Planck Institute für Eisenforschung GmbH
Dirk Ponge: Max Planck Institute für Eisenforschung GmbH
Sandra Korte-Kerzel: Institute of Physical Metallurgy and Metal Physics, RWTH Aachen University
Dierk Raabe: Max Planck Institute für Eisenforschung GmbH
Baptiste Gault: Max Planck Institute für Eisenforschung GmbH

Nature Communications, 2019, vol. 10, issue 1, 1-10

Abstract: Abstract Hydrogen pick-up leading to hydride formation is often observed in commercially pure Ti (CP-Ti) and Ti-based alloys prepared for microscopic observation by conventional methods, such as electro-polishing and room temperature focused ion beam (FIB) milling. Here, we demonstrate that cryogenic FIB milling can effectively prevent undesired hydrogen pick-up. Specimens of CP-Ti and a Ti dual-phase alloy (Ti-6Al-2Sn-4Zr-6Mo, Ti6246, in wt.%) were prepared using a xenon-plasma FIB microscope equipped with a cryogenic stage reaching −135 °C. Transmission electron microscopy (TEM), selected area electron diffraction, and scanning TEM indicated no hydride formation in cryo-milled CP-Ti lamellae. Atom probe tomography further demonstrated that cryo-FIB significantly reduces hydrogen levels within the Ti6246 matrix compared with conventional methods. Supported by molecular dynamics simulations, we show that significantly lowering the thermal activation for H diffusion inhibits undesired environmental hydrogen pick-up during preparation and prevents pre-charged hydrogen from diffusing out of the sample, allowing for hydrogen embrittlement mechanisms of Ti-based alloys to be investigated at the nanoscale.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-08752-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08752-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-08752-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08752-7