The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants
Christopher Kesten,
Arndt Wallmann,
René Schneider,
Heather E. McFarlane,
Anne Diehl,
Ghazanfar Abbas Khan,
Barth-Jan Rossum,
Edwin R. Lampugnani,
Witold G. Szymanski,
Nils Cremer,
Peter Schmieder,
Kristina L. Ford,
Florian Seiter,
Joshua L. Heazlewood,
Clara Sanchez-Rodriguez,
Hartmut Oschkinat () and
Staffan Persson ()
Additional contact information
Christopher Kesten: ETH Zurich
Arndt Wallmann: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), NMR-supported Structural Biology
René Schneider: University of Melbourne
Heather E. McFarlane: University of Melbourne
Anne Diehl: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), NMR-supported Structural Biology
Ghazanfar Abbas Khan: University of Melbourne
Barth-Jan Rossum: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), NMR-supported Structural Biology
Edwin R. Lampugnani: University of Melbourne
Witold G. Szymanski: Max-Planck-Institute of Molecular Plant Physiology
Nils Cremer: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), NMR-supported Structural Biology
Peter Schmieder: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), NMR-supported Structural Biology
Kristina L. Ford: University of Melbourne
Florian Seiter: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), NMR-supported Structural Biology
Joshua L. Heazlewood: University of Melbourne
Clara Sanchez-Rodriguez: ETH Zurich
Hartmut Oschkinat: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), NMR-supported Structural Biology
Staffan Persson: University of Melbourne
Nature Communications, 2019, vol. 10, issue 1, 1-14
Abstract:
Abstract Microtubules are filamentous structures necessary for cell division, motility and morphology, with dynamics critically regulated by microtubule-associated proteins (MAPs). Here we outline the molecular mechanism by which the MAP, COMPANION OF CELLULOSE SYNTHASE1 (CC1), controls microtubule bundling and dynamics to sustain plant growth under salt stress. CC1 contains an intrinsically disordered N-terminus that links microtubules at evenly distributed points through four conserved hydrophobic regions. By NMR and live cell analyses we reveal that two neighboring residues in the first hydrophobic binding motif are crucial for the microtubule interaction. The microtubule-binding mechanism of CC1 is reminiscent to that of the prominent neuropathology-related protein Tau, indicating evolutionary convergence of MAP functions across animal and plant cells.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-08780-3 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08780-3
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-08780-3
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().