Rationally designed azobenzene photoswitches for efficient two-photon neuronal excitation
Gisela Cabré,
Aida Garrido-Charles,
Miquel Moreno,
Miquel Bosch,
Montserrat Porta- de-la-Riva,
Michael Krieg,
Marta Gascón-Moya,
Núria Camarero,
Ricard Gelabert,
José M. Lluch,
Félix Busqué,
Jordi Hernando,
Pau Gorostiza () and
Ramon Alibés ()
Additional contact information
Gisela Cabré: Universitat Autònoma de Barcelona (UAB)
Aida Garrido-Charles: Barcelona Institute of Science and Technology (BIST)
Miquel Moreno: Universitat Autònoma de Barcelona (UAB)
Miquel Bosch: Barcelona Institute of Science and Technology (BIST)
Montserrat Porta- de-la-Riva: The Barcelona Institute of Science and Technology (BIST)
Michael Krieg: The Barcelona Institute of Science and Technology (BIST)
Marta Gascón-Moya: Universitat Autònoma de Barcelona (UAB)
Núria Camarero: Barcelona Institute of Science and Technology (BIST)
Ricard Gelabert: Universitat Autònoma de Barcelona (UAB)
José M. Lluch: Universitat Autònoma de Barcelona (UAB)
Félix Busqué: Universitat Autònoma de Barcelona (UAB)
Jordi Hernando: Universitat Autònoma de Barcelona (UAB)
Pau Gorostiza: Barcelona Institute of Science and Technology (BIST)
Ramon Alibés: Universitat Autònoma de Barcelona (UAB)
Nature Communications, 2019, vol. 10, issue 1, 1-12
Abstract:
Abstract Manipulation of neuronal activity using two-photon excitation of azobenzene photoswitches with near-infrared light has been recently demonstrated, but their practical use in neuronal tissue to photostimulate individual neurons with three-dimensional precision has been hampered by firstly, the low efficacy and reliability of NIR-induced azobenzene photoisomerization compared to one-photon excitation, and secondly, the short cis state lifetime of the two-photon responsive azo switches. Here we report the rational design based on theoretical calculations and the synthesis of azobenzene photoswitches endowed with both high two-photon absorption cross section and slow thermal back-isomerization. These compounds provide optimized and sustained two-photon neuronal stimulation both in light-scattering brain tissue and in Caenorhabditis elegans nematodes, displaying photoresponse intensities that are comparable to those achieved under one-photon excitation. This finding opens the way to use both genetically targeted and pharmacologically selective azobenzene photoswitches to dissect intact neuronal circuits in three dimensions.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-08796-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08796-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-08796-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().