Rapid active zone remodeling consolidates presynaptic potentiation
Mathias A. Böhme,
Anthony W. McCarthy,
Andreas T. Grasskamp,
Christine B. Beuschel,
Pragya Goel,
Meida Jusyte,
Desiree Laber,
Sheng Huang,
Ulises Rey,
Astrid G. Petzoldt,
Martin Lehmann,
Fabian Göttfert,
Pejmun Haghighi,
Stefan W. Hell,
David Owald,
Dion Dickman,
Stephan J. Sigrist () and
Alexander M. Walter ()
Additional contact information
Mathias A. Böhme: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Anthony W. McCarthy: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Andreas T. Grasskamp: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Christine B. Beuschel: NeuroCure Cluster of Excellence, Charité Universitätsmedizin
Pragya Goel: University of Southern California
Meida Jusyte: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Desiree Laber: Charité Universitätsmedizin
Sheng Huang: Freie Universität Berlin
Ulises Rey: Freie Universität Berlin
Astrid G. Petzoldt: Freie Universität Berlin
Martin Lehmann: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Fabian Göttfert: Max Planck Institute for Biophysical Chemistry
Pejmun Haghighi: Buck Institute for Research on Aging
Stefan W. Hell: Max Planck Institute for Biophysical Chemistry
David Owald: Charité Universitätsmedizin
Dion Dickman: University of Southern California
Stephan J. Sigrist: NeuroCure Cluster of Excellence, Charité Universitätsmedizin
Alexander M. Walter: Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Nature Communications, 2019, vol. 10, issue 1, 1-16
Abstract:
Abstract Neuronal communication across synapses relies on neurotransmitter release from presynaptic active zones (AZs) followed by postsynaptic transmitter detection. Synaptic plasticity homeostatically maintains functionality during perturbations and enables memory formation. Postsynaptic plasticity targets neurotransmitter receptors, but presynaptic mechanisms regulating the neurotransmitter release apparatus remain largely enigmatic. By studying Drosophila neuromuscular junctions (NMJs) we show that AZs consist of nano-modular release sites and identify a molecular sequence that adds modules within minutes of inducing homeostatic plasticity. This requires cognate transport machinery and specific AZ-scaffolding proteins. Structural remodeling is not required for immediate potentiation of neurotransmitter release, but necessary to sustain potentiation over longer timescales. Finally, mutations in Unc13 disrupting homeostatic plasticity at the NMJ also impair short-term memory when central neurons are targeted, suggesting that both plasticity mechanisms utilize Unc13. Together, while immediate synaptic potentiation capitalizes on available material, it triggers the coincident incorporation of modular release sites to consolidate synaptic potentiation.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-08977-6 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-08977-6
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-08977-6
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().