EconPapers    
Economics at your fingertips  
 

CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations

Grégoire Cullot, Julian Boutin, Jérôme Toutain, Florence Prat, Perrine Pennamen, Caroline Rooryck, Martin Teichmann, Emilie Rousseau, Isabelle Lamrissi-Garcia, Véronique Guyonnet-Duperat, Alice Bibeyran, Magalie Lalanne, Valérie Prouzet-Mauléon, Béatrice Turcq, Cécile Ged, Jean-Marc Blouin, Emmanuel Richard, Sandrine Dabernat, François Moreau-Gaudry () and Aurélie Bedel
Additional contact information
Grégoire Cullot: Univ. Bordeaux
Julian Boutin: Univ. Bordeaux
Jérôme Toutain: CHU Bordeaux
Florence Prat: Univ. Bordeaux
Perrine Pennamen: CHU Bordeaux
Caroline Rooryck: CHU Bordeaux
Martin Teichmann: Univ. Bordeaux
Emilie Rousseau: Univ. Bordeaux
Isabelle Lamrissi-Garcia: Univ. Bordeaux
Véronique Guyonnet-Duperat: INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers
Alice Bibeyran: INSERM U1035, Biotherapy of genetic diseases, inflammatory disorders and cancers
Magalie Lalanne: Univ. Bordeaux
Valérie Prouzet-Mauléon: Univ. Bordeaux
Béatrice Turcq: Univ. Bordeaux
Cécile Ged: Univ. Bordeaux
Jean-Marc Blouin: Univ. Bordeaux
Emmanuel Richard: Univ. Bordeaux
Sandrine Dabernat: Univ. Bordeaux
François Moreau-Gaudry: Univ. Bordeaux
Aurélie Bedel: Univ. Bordeaux

Nature Communications, 2019, vol. 10, issue 1, 1-14

Abstract: Abstract CRISPR-Cas9 is a promising technology for genome editing. Here we use Cas9 nuclease-induced double-strand break DNA (DSB) at the UROS locus to model and correct congenital erythropoietic porphyria. We demonstrate that homology-directed repair is rare compared with NHEJ pathway leading to on-target indels and causing unwanted dysfunctional protein. Moreover, we describe unexpected chromosomal truncations resulting from only one Cas9 nuclease-induced DSB in cell lines and primary cells by a p53-dependent mechanism. Altogether, these side effects may limit the promising perspectives of the CRISPR-Cas9 nuclease system for disease modeling and gene therapy. We show that the single nickase approach could be safer since it prevents on- and off-target indels and chromosomal truncations. These results demonstrate that the single nickase and not the nuclease approach is preferable, not only for modeling disease but also and more importantly for the safe management of future CRISPR-Cas9-mediated gene therapies.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (19)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-09006-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09006-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-09006-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09006-2