Dynamic emission Stokes shift and liquid-like dielectric solvation of band edge carriers in lead-halide perovskites
Yinsheng Guo,
Omer Yaffe,
Trevor D. Hull,
Jonathan S. Owen,
David R. Reichman and
Louis E. Brus ()
Additional contact information
Yinsheng Guo: Columbia University
Omer Yaffe: Weizmann Institute of Science
Trevor D. Hull: Columbia University
Jonathan S. Owen: Columbia University
David R. Reichman: Columbia University
Louis E. Brus: Columbia University
Nature Communications, 2019, vol. 10, issue 1, 1-8
Abstract:
Abstract Lead-halide perovskites have emerged as promising materials for photovoltaic and optoelectronic applications. Their significantly anharmonic lattice motion, in contrast to conventional harmonic semiconductors, presents a conceptual challenge in understanding the genesis of their exceptional optoelectronic properties. Here we report a strongly temperature dependent luminescence Stokes shift in the electronic spectra of both hybrid and inorganic lead-bromide perovskite single crystals. This behavior stands in stark contrast to that exhibited by more conventional crystalline semiconductors. We correlate the electronic spectra with the anti-Stokes and Stokes Raman vibrational spectra. Dielectric solvation theories, originally developed for excited molecules dissolved in polar liquids, reproduce our experimental observations. Our approach, which invokes a classical Debye-like relaxation process, captures the dielectric response originating from the incipient anharmonicity of the LO phonon at about 20 meV (160 cm−1) in the lead-bromide framework. We reconcile this liquid-like model incorporating thermally-activated dielectric solvation with more standard solid-state theories of the emission Stokes shift in crystalline semiconductors.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-09057-5 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09057-5
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-09057-5
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().