EconPapers    
Economics at your fingertips  
 

Eutrophication will increase methane emissions from lakes and impoundments during the 21st century

Jake J. Beaulieu (), Tonya DelSontro and John A. Downing
Additional contact information
Jake J. Beaulieu: Office of Research and Development
Tonya DelSontro: Université du Québec à Montréal
John A. Downing: University of Minnesota

Nature Communications, 2019, vol. 10, issue 1, 1-5

Abstract: Abstract Lakes and impoundments are an important source of methane (CH4), a potent greenhouse gas, to the atmosphere. A recent analysis shows aquatic productivity (i.e., eutrophication) is an important driver of CH4 emissions from lentic waters. Considering that aquatic productivity will increase over the next century due to climate change and a growing human population, a concomitant increase in aquatic CH4 emissions may occur. We simulate the eutrophication of lentic waters under scenarios of future nutrient loading to inland waters and show that enhanced eutrophication of lakes and impoundments will substantially increase CH4 emissions from these systems (+30–90%) over the next century. This increased CH4 emission has an atmospheric impact of 1.7–2.6 Pg C-CO2-eq y−1, which is equivalent to 18–33% of annual CO2 emissions from burning fossil fuels. Thus, it is not only important to limit eutrophication to preserve fragile water supplies, but also to avoid acceleration of climate change.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-09100-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09100-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-09100-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09100-5