EconPapers    
Economics at your fingertips  
 

Fluorinated MOF platform for selective removal and sensing of SO2 from flue gas and air

M. R. Tchalala, P. M. Bhatt, K. N. Chappanda, S. R. Tavares, K. Adil, Y. Belmabkhout, A. Shkurenko, A. Cadiau, N. Heymans, G. Weireld, G. Maurin, K. N. Salama () and M. Eddaoudi ()
Additional contact information
M. R. Tchalala: King Abdullah University of Science and Technology (KAUST)
P. M. Bhatt: King Abdullah University of Science and Technology (KAUST)
K. N. Chappanda: King Abdullah University of Science and Technology (KAUST)
S. R. Tavares: Institut Charles Gerhardt Montpellier (UMR CNRS 5253), Université Montpellier
K. Adil: King Abdullah University of Science and Technology (KAUST)
Y. Belmabkhout: King Abdullah University of Science and Technology (KAUST)
A. Shkurenko: King Abdullah University of Science and Technology (KAUST)
A. Cadiau: King Abdullah University of Science and Technology (KAUST)
N. Heymans: Service de thermodynamique, Faculté Polytechnique de Mons, Université de Mons
G. Weireld: Service de thermodynamique, Faculté Polytechnique de Mons, Université de Mons
G. Maurin: Institut Charles Gerhardt Montpellier (UMR CNRS 5253), Université Montpellier
K. N. Salama: King Abdullah University of Science and Technology (KAUST)
M. Eddaoudi: King Abdullah University of Science and Technology (KAUST)

Nature Communications, 2019, vol. 10, issue 1, 1-10

Abstract: Abstract Conventional SO2 scrubbing agents, namely calcium oxide and zeolites, are often used to remove SO2 using a strong or irreversible adsorption-based process. However, adsorbents capable of sensing and selectively capturing this toxic molecule in a reversible manner, with in-depth understanding of structure–property relationships, have been rarely explored. Here we report the selective removal and sensing of SO2 using recently unveiled fluorinated metal–organic frameworks (MOFs). Mixed gas adsorption experiments were performed at low concentrations ranging from 250 p.p.m. to 7% of SO2. Direct mixed gas column breakthrough and/or column desorption experiments revealed an unprecedented SO2 affinity for KAUST-7 (NbOFFIVE-1-Ni) and KAUST-8 (AlFFIVE-1-Ni) MOFs. Furthermore, MOF-coated quartz crystal microbalance transducers were used to develop sensors with the ability to detect SO2 at low concentrations ranging from 25 to 500 p.p.m.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-09157-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09157-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-09157-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09157-2