EconPapers    
Economics at your fingertips  
 

Model states for a class of chiral topological order interfaces

V. Crépel (), N. Claussen, B. Estienne and N. Regnault
Additional contact information
V. Crépel: ENS, Université PSL, CNRS, Sorbonne Université, Sorbonne Paris Cité, Université Paris Diderot
N. Claussen: ENS, Université PSL, CNRS, Sorbonne Université, Sorbonne Paris Cité, Université Paris Diderot
B. Estienne: CNRS, Sorbonne Université
N. Regnault: ENS, Université PSL, CNRS, Sorbonne Université, Sorbonne Paris Cité, Université Paris Diderot

Nature Communications, 2019, vol. 10, issue 1, 1-7

Abstract: Abstract Interfaces between topologically distinct phases of matter reveal a remarkably rich phenomenology. To go beyond effective field theories, we study the prototypical example of such an interface between two Abelian states, namely the Laughlin and Halperin states. Using matrix product states, we propose a family of model wavefunctions for the whole system including both bulks and the interface. We show through extensive numerical studies that it unveils both the universal properties of the system, such as the central charge of the gapless interface mode and its microscopic features. It also captures the low energy physics of experimentally relevant Hamiltonians. Our approach can be generalized to other phases described by tensor networks.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-09168-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09168-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-09168-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09168-z