EconPapers    
Economics at your fingertips  
 

Scalable preparation of alternating block copolymer particles with inverse bicontinuous mesophases

Fei Lv, Zesheng An () and Peiyi Wu ()
Additional contact information
Fei Lv: Fudan University
Zesheng An: Shanghai University
Peiyi Wu: Fudan University

Nature Communications, 2019, vol. 10, issue 1, 1-7

Abstract: Abstract Block copolymer particles with controlled morphologies are of great significance in nanomaterials and nanotechnology. However, ordered inverse morphologies are difficult to achieve due to complex mechanism and formation conditions. Here we report scalable preparation of amphiphilic alternating block copolymer particles with inverse bicontinuous mesophases via polymerization-induced self-assembly (PISA). Concentrated dispersion copolymerizations (up to 40% solid content) of styrene (St) and pentafluorostyrene (PFS) employing a short poly(N,N-dimethylacrylamide) (PDMA29) stabilizer block lead to the formation of well-defined, highly asymmetric PDMA29-b-P(St-alt-PFS)x block copolymers with precise compositions and various morphologies, from simple spheres to ordered inverse cubosome mesophases. The particle morphology is affected by the molecular weight, solid content, and nature of the cosolvents. The cubosome structure is confirmed by electron microscopies and small angle X-ray scattering spectroscopy. This scalable PISA approach offers facile access to ordered inverse mesophases, significantly expanding the PISA morphology scope and enabling its applicability to the materials science fields.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-09324-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09324-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-09324-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09324-5