A TetR-family transcription factor regulates fatty acid metabolism in the archaeal model organism Sulfolobus acidocaldarius
Kun Wang,
David Sybers,
Hassan Ramadan Maklad,
Liesbeth Lemmens,
Charlotte Lewyllie,
Xiaoxiao Zhou,
Frank Schult,
Christopher Bräsen,
Bettina Siebers,
Karin Valegård,
Ann-Christin Lindås () and
Eveline Peeters ()
Additional contact information
Kun Wang: The Wenner-Gren Institute, Stockholm University
David Sybers: Vrije Universiteit Brussel
Hassan Ramadan Maklad: Vrije Universiteit Brussel
Liesbeth Lemmens: Vrije Universiteit Brussel
Charlotte Lewyllie: Vrije Universiteit Brussel
Xiaoxiao Zhou: Biofilm Centre, ZWU, Fakultät für Chemie, Universität Duisburg-Essen
Frank Schult: Biofilm Centre, ZWU, Fakultät für Chemie, Universität Duisburg-Essen
Christopher Bräsen: Biofilm Centre, ZWU, Fakultät für Chemie, Universität Duisburg-Essen
Bettina Siebers: Biofilm Centre, ZWU, Fakultät für Chemie, Universität Duisburg-Essen
Karin Valegård: Uppsala University
Ann-Christin Lindås: The Wenner-Gren Institute, Stockholm University
Eveline Peeters: Vrije Universiteit Brussel
Nature Communications, 2019, vol. 10, issue 1, 1-16
Abstract:
Abstract Fatty acid metabolism and its regulation are known to play important roles in bacteria and eukaryotes. By contrast, although certain archaea appear to metabolize fatty acids, the regulation of the underlying pathways in these organisms remains unclear. Here, we show that a TetR-family transcriptional regulator (FadRSa) is involved in regulation of fatty acid metabolism in the crenarchaeon Sulfolobus acidocaldarius. Functional and structural analyses show that FadRSa binds to DNA at semi-palindromic recognition sites in two distinct stoichiometric binding modes depending on the operator sequence. Genome-wide transcriptomic and chromatin immunoprecipitation analyses demonstrate that the protein binds to only four genomic sites, acting as a repressor of a 30-kb gene cluster comprising 23 open reading frames encoding lipases and β-oxidation enzymes. Fatty acyl-CoA molecules cause dissociation of FadRSa binding by inducing conformational changes in the protein. Our results indicate that, despite its similarity in overall structure to bacterial TetR-family FadR regulators, FadRSa displays a different acyl-CoA binding mode and a distinct regulatory mechanism.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-09479-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09479-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-09479-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().