Supersonic plasma turbulence in the laboratory
T. G. White (),
M. T. Oliver,
P. Mabey,
M. Kühn-Kauffeldt,
A. F. A. Bott,
L. N. K. Döhl,
A. R. Bell,
R. Bingham,
R. Clarke,
J. Foster,
G. Giacinti,
P. Graham,
R. Heathcote,
M. Koenig,
Y. Kuramitsu,
D. Q. Lamb,
J. Meinecke,
Th. Michel,
F. Miniati,
M. Notley,
B. Reville,
D. Ryu,
S. Sarkar,
Y. Sakawa,
M. P. Selwood,
J. Squire,
R. H. H. Scott,
P. Tzeferacos,
N. Woolsey,
A. A. Schekochihin and
G. Gregori ()
Additional contact information
T. G. White: University of Oxford
M. T. Oliver: University of Oxford
P. Mabey: University of Oxford
M. Kühn-Kauffeldt: Universität der Bundeswehr München
A. F. A. Bott: University of Oxford
L. N. K. Döhl: University of York
A. R. Bell: University of Oxford
R. Bingham: Central Laser Facility, STFC Rutherford Appleton Laboratory
R. Clarke: Central Laser Facility, STFC Rutherford Appleton Laboratory
J. Foster: AWE, Aldermaston
G. Giacinti: Max-Planck-Institut für Kernphysik
P. Graham: AWE, Aldermaston
R. Heathcote: Central Laser Facility, STFC Rutherford Appleton Laboratory
M. Koenig: LULI—CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universitiés
Y. Kuramitsu: Osaka University
D. Q. Lamb: University of Chicago
J. Meinecke: University of Oxford
Th. Michel: LULI—CNRS, Ecole Polytechnique, CEA: Université Paris-Saclay; UPMC Univ Paris 06: Sorbonne Universitiés
F. Miniati: University of Oxford
M. Notley: Central Laser Facility, STFC Rutherford Appleton Laboratory
B. Reville: Queens University Belfast
D. Ryu: School of Natural Sciences, UNIST
S. Sarkar: University of Oxford
Y. Sakawa: Institute of Laser Engineering
M. P. Selwood: Central Laser Facility, STFC Rutherford Appleton Laboratory
J. Squire: Theoretical Astrophysics, 350-17, California Institute of Technology
R. H. H. Scott: Central Laser Facility, STFC Rutherford Appleton Laboratory
P. Tzeferacos: University of Chicago
N. Woolsey: University of York
A. A. Schekochihin: University of Oxford
G. Gregori: University of Oxford
Nature Communications, 2019, vol. 10, issue 1, 1-6
Abstract:
Abstract The properties of supersonic, compressible plasma turbulence determine the behavior of many terrestrial and astrophysical systems. In the interstellar medium and molecular clouds, compressible turbulence plays a vital role in star formation and the evolution of our galaxy. Observations of the density and velocity power spectra in the Orion B and Perseus molecular clouds show large deviations from those predicted for incompressible turbulence. Hydrodynamic simulations attribute this to the high Mach number in the interstellar medium (ISM), although the exact details of this dependence are not well understood. Here we investigate experimentally the statistical behavior of boundary-free supersonic turbulence created by the collision of two laser-driven high-velocity turbulent plasma jets. The Mach number dependence of the slopes of the density and velocity power spectra agree with astrophysical observations, and supports the notion that the turbulence transitions from being Kolmogorov-like at low Mach number to being more Burgers-like at higher Mach numbers.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-09498-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09498-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-09498-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().