EconPapers    
Economics at your fingertips  
 

Loss of TET2 and TET3 in regulatory T cells unleashes effector function

Xiaojing Yue, Chan-Wang J. Lio, Daniela Samaniego-Castruita, Xiang Li and Anjana Rao ()
Additional contact information
Xiaojing Yue: La Jolla Institute for Immunology
Chan-Wang J. Lio: La Jolla Institute for Immunology
Daniela Samaniego-Castruita: La Jolla Institute for Immunology
Xiang Li: La Jolla Institute for Immunology
Anjana Rao: La Jolla Institute for Immunology

Nature Communications, 2019, vol. 10, issue 1, 1-14

Abstract: Abstract TET enzymes oxidize 5-methylcytosine to 5-hydroxymethylcytosine and other oxidized methylcytosines in DNA. Here we examine the role of TET proteins in regulatory T (Treg) cells. Tet2/3fl/flFoxp3Cre mice lacking Tet2 and Tet3 in Treg cells develop inflammatory disease, and Treg cells from these mice show altered expression of Treg signature genes and upregulation of genes involved in cell cycle, DNA damage and cancer. In littermate mice with severe inflammation, both CD4+Foxp3+ and CD4+Foxp3− cells show strong skewing towards Tfh/Th17 phenotypes. Wild-type Treg cells in mixed bone marrow chimeras and in Tet2/3fl/flFoxp3WT/Cre heterozygous female mice are unable to rescue the aberrant properties of Tet2/3fl/flFoxp3Cre Treg cells. Treg cells from Tet2/3fl/flFoxp3Cre mice tend to lose Foxp3 expression, and transfer of total CD4+ T cells isolated from Tet2/3fl/flFoxp3Cre mice could elicit inflammatory disease in fully immunocompetent mice. Together, these data indicate that Tet2 and Tet3 are guardians of Treg cell stability and immune homeostasis.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-09541-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09541-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-09541-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09541-y