EconPapers    
Economics at your fingertips  
 

Investigating underlying mechanism in spectral narrowing phenomenon induced by microcavity in organic light emitting diodes

Miaosheng Wang, Jie Lin, Yu-Che Hsiao, Xingyuan Liu () and Bin Hu ()
Additional contact information
Miaosheng Wang: Beijing Jiaotong University
Jie Lin: Chinese Academy of Sciences
Yu-Che Hsiao: University of Tennessee
Xingyuan Liu: Chinese Academy of Sciences
Bin Hu: Beijing Jiaotong University

Nature Communications, 2019, vol. 10, issue 1, 1-7

Abstract: Abstract This paper reports our experimental studies on the underlying mechanism responsible for electroluminescence spectral narrowing phenomenon in the cavity-based organic light-emitting diodes. It is found that the microcavity generates an emerging phenomenon: a magneto-photoluminescence signal in Poly(9,9-dioctylfluorene-alt-benzothiadiazole) polymer under photoexcitation, which is completely absent when microcavity is not used. This provides an evidence that microcavity leads to the formation of spatially extended states, functioning as the intermediate states prior to the formation of Frenkel excitons in organic materials. This is confirmed by the magneto-electroluminescence solely observed from the cavity-based light-emitting diodes under electrical injection. Furthermore, the narrowed electroluminescence output shows a linear polarization, concurrently occurred with magneto-electroluminescence. This indicates that the spatially extended sates become aligned towards forming coherent light-emitting excitons within the microcavity through optical resonance. Clearly, the spatially extended states present the necessary condition to realize electroluminescence spectral narrowing phenomenon towards lasing actions in cavity-based organic light-emitting diodes.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-09585-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09585-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-09585-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09585-0