EconPapers    
Economics at your fingertips  
 

Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation

Yingshuo Liu and Charles C. L. McCrory ()
Additional contact information
Yingshuo Liu: University of Michigan
Charles C. L. McCrory: University of Michigan

Nature Communications, 2019, vol. 10, issue 1, 1-10

Abstract: Abstract The selective and efficient electrochemical reduction of CO2 to single products is crucial for solar fuels development. Encapsulating molecular catalysts such as cobalt phthalocyanine within coordination polymers such as poly-4-vinylpyridine leads to dramatically increased activity and selectivity for CO2 reduction. In this study, we use a combination of kinetic isotope effect and proton inventory studies to explain the observed increase in activity and selectivity upon polymer encapsulation. We provide evidence that axial-coordination from the pyridyl moieties in poly-4-vinylpyridine to the cobalt phthalocyanine complex changes the rate-determining step in the CO2 reduction mechanism accounting for the increased activity in the catalyst-polymer composite. Moreover, we show that proton delivery to cobalt centers within the polymer is controlled by a proton relay mechanism that inhibits competitive hydrogen evolution. These mechanistic findings provide design strategies for selective CO2 reduction electrocatalysts and serve as a model for understanding the catalytic mechanism of related heterogeneous systems.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-09626-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09626-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-09626-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09626-8