Dishevelled-3 conformation dynamics analyzed by FRET-based biosensors reveals a key role of casein kinase 1
Jakub Harnoš,
Maria Consuelo Alonso Cañizal,
Miroslav Jurásek,
Jitender Kumar,
Cornelia Holler,
Alexandra Schambony,
Kateřina Hanáková,
Ondřej Bernatík,
Zbyněk Zdráhal,
Kristína Gömöryová,
Tomáš Gybeľ,
Tomasz Witold Radaszkiewicz,
Marek Kravec,
Lukáš Trantírek,
Jan Ryneš,
Zankruti Dave,
Ana Iris Fernández-Llamazares,
Robert Vácha,
Konstantinos Tripsianes,
Carsten Hoffmann and
Vítězslav Bryja ()
Additional contact information
Jakub Harnoš: Masaryk University
Maria Consuelo Alonso Cañizal: University of Würzburg
Miroslav Jurásek: Masaryk University
Jitender Kumar: Masaryk University
Cornelia Holler: Max Planck Institute for the Science of Light
Alexandra Schambony: Max Planck Institute for the Science of Light
Kateřina Hanáková: Masaryk University
Ondřej Bernatík: Masaryk University
Zbyněk Zdráhal: Masaryk University
Kristína Gömöryová: Masaryk University
Tomáš Gybeľ: Masaryk University
Tomasz Witold Radaszkiewicz: Masaryk University
Marek Kravec: Masaryk University
Lukáš Trantírek: Masaryk University
Jan Ryneš: Masaryk University
Zankruti Dave: Masaryk University
Ana Iris Fernández-Llamazares: Pepscan Therapeutics B.V.
Robert Vácha: Masaryk University
Konstantinos Tripsianes: Masaryk University
Carsten Hoffmann: University of Würzburg
Vítězslav Bryja: Masaryk University
Nature Communications, 2019, vol. 10, issue 1, 1-18
Abstract:
Abstract Dishevelled (DVL) is the key component of the Wnt signaling pathway. Currently, DVL conformational dynamics under native conditions is unknown. To overcome this limitation, we develop the Fluorescein Arsenical Hairpin Binder- (FlAsH-) based FRET in vivo approach to study DVL conformation in living cells. Using this single-cell FRET approach, we demonstrate that (i) Wnt ligands induce open DVL conformation, (ii) DVL variants that are predominantly open, show more even subcellular localization and more efficient membrane recruitment by Frizzled (FZD) and (iii) Casein kinase 1 ɛ (CK1ɛ) has a key regulatory function in DVL conformational dynamics. In silico modeling and in vitro biophysical methods explain how CK1ɛ-specific phosphorylation events control DVL conformations via modulation of the PDZ domain and its interaction with DVL C-terminus. In summary, our study describes an experimental tool for DVL conformational sampling in living cells and elucidates the essential regulatory role of CK1ɛ in DVL conformational dynamics.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-09651-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09651-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-09651-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().