EconPapers    
Economics at your fingertips  
 

Origin of band gaps in 3d perovskite oxides

Julien Varignon, Manuel Bibes and Alex Zunger ()
Additional contact information
Julien Varignon: Unité Mixte de Physique, CNRS/Thales, Université Paris Sud, Université Paris-Saclay
Manuel Bibes: Unité Mixte de Physique, CNRS/Thales, Université Paris Sud, Université Paris-Saclay
Alex Zunger: University of Colorado Boulder Colorado

Nature Communications, 2019, vol. 10, issue 1, 1-11

Abstract: Abstract With their broad range of properties, ABO3 transition metal perovskite oxides have long served as a platform for device applications and as a testing bed for different condensed matter theories. Their insulating character and structural distortions are often ascribed to dynamical electronic correlations within a universal, symmetry-conserving paradigm. This view restricts predictive theory to complex computational schemes, going beyond density functional theory (DFT). Here, we show that, if one allows symmetry-breaking energy-lowering crystal symmetry reductions and electronic instabilities within DFT, one successfully and systematically recovers the trends in the observed band gaps, magnetic moments, type of magnetic and crystallographic ground state, bond disproportionation and ligand hole effects, Mott vs. charge transfer insulator behaviors, and the amplitude of structural deformation modes including Jahn-Teller in low temperature spin-ordered and high temperature disordered paramagnetic phases. We then provide a classification of the four mechanisms of gap formation and establish DFT as a reliable base platform to study the ground state properties in complex oxides.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-09698-6 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09698-6

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-09698-6

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09698-6