EconPapers    
Economics at your fingertips  
 

Development of hRad51–Cas9 nickase fusions that mediate HDR without double-stranded breaks

Holly A. Rees, Wei-Hsi Yeh and David R. Liu ()
Additional contact information
Holly A. Rees: Broad Institute of Harvard and MIT
Wei-Hsi Yeh: Broad Institute of Harvard and MIT
David R. Liu: Broad Institute of Harvard and MIT

Nature Communications, 2019, vol. 10, issue 1, 1-12

Abstract: Abstract In mammalian cells, double-stranded DNA breaks (DSBs) are preferentially repaired through end-joining processes that generally lead to mixtures of insertions and deletions (indels) or other rearrangements at the cleavage site. In the presence of homologous DNA, homology-directed repair (HDR) can generate specific mutations, albeit typically with modest efficiency and a low ratio of HDR products:indels. Here, we develop hRad51 mutants fused to Cas9(D10A) nickase (RDN) that mediate HDR while minimizing indels. We use RDN to install disease-associated point mutations in HEK293T cells with comparable or better efficiency than Cas9 nuclease and a 2.7-to-53-fold higher ratio of desired HDR product:undesired byproducts. Across five different human cell types, RDN variants generally result in higher HDR:indel ratios and lower off-target activity than Cas9 nuclease, although HDR efficiencies remain strongly site- and cell type-dependent. RDN variants provide precision editing options in cell types amenable to HDR, especially when byproducts of DSBs must be minimized.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-09983-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09983-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-09983-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-09983-4