A de novo strategy for predictive crystal engineering to tune excitonic coupling
Ritesh Haldar,
Antoine Mazel,
Marjan Krstić,
Qiang Zhang,
Marius Jakoby,
Ian A. Howard,
Bryce S. Richards,
Nicole Jung,
Denis Jacquemin,
Stéphane Diring (),
Wolfgang Wenzel (),
Fabrice Odobel () and
Christof Wöll ()
Additional contact information
Ritesh Haldar: Institute of Functional Interfaces (IFG)
Antoine Mazel: Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230
Marjan Krstić: Karlsruhe Institute of Technology (KIT)
Qiang Zhang: Institute of Functional Interfaces (IFG)
Marius Jakoby: Institute of Microstructure Technology (IMT)
Ian A. Howard: Institute of Microstructure Technology (IMT)
Bryce S. Richards: Institute of Microstructure Technology (IMT)
Nicole Jung: Institute of Organic Chemistry (IOC)
Denis Jacquemin: Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230
Stéphane Diring: Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230
Wolfgang Wenzel: Karlsruhe Institute of Technology (KIT)
Fabrice Odobel: Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230
Christof Wöll: Institute of Functional Interfaces (IFG)
Nature Communications, 2019, vol. 10, issue 1, 1-7
Abstract:
Abstract In molecular solids, the intense photoluminescence (PL) observed for solvated dye molecules is often suppressed by nonradiative decay processes introduced by excitonic coupling to adjacent chromophores. We have developed a strategy to avoid this undesirable PL quenching by optimizing the chromophore packing. We integrated the photoactive compounds into metal-organic frameworks (MOFs) and tuned the molecular alignment by introducing adjustable “steric control units” (SCUs). We determined the optimal alignment of core-substituted naphthalenediimides (cNDIs) to yield highly emissive J-aggregates by a computational analysis. Then, we created a large library of handle-equipped MOF chromophoric linkers and computationally screened for the best SCUs. A thorough photophysical characterization confirmed the formation of J-aggregates with bright green emission, with unprecedented photoluminescent quantum yields for crystalline NDI-based materials. This data demonstrates the viability of MOF-based crystal engineering approaches that can be universally applied to tailor the photophysical properties of organic semiconductor materials.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-10011-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10011-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-10011-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().