Femtosecond time-resolved two-photon photoemission studies of ultrafast carrier relaxation in Cu2O photoelectrodes
Mario Borgwardt,
Stefan T. Omelchenko,
Marco Favaro,
Paul Plate,
Christian Höhn,
Daniel Abou-Ras,
Klaus Schwarzburg,
Roel van de Krol,
Harry A. Atwater,
Nathan S. Lewis,
Rainer Eichberger () and
Dennis Friedrich ()
Additional contact information
Mario Borgwardt: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Stefan T. Omelchenko: California Institute of Technology
Marco Favaro: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Paul Plate: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Christian Höhn: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Daniel Abou-Ras: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Klaus Schwarzburg: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Roel van de Krol: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Harry A. Atwater: California Institute of Technology
Nathan S. Lewis: California Institute of Technology
Rainer Eichberger: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Dennis Friedrich: Helmholtz-Zentrum Berlin für Materialien und Energie GmbH
Nature Communications, 2019, vol. 10, issue 1, 1-7
Abstract:
Abstract Cuprous oxide (Cu2O) is a promising material for solar-driven water splitting to produce hydrogen. However, the relatively small accessible photovoltage limits the development of efficient Cu2O based photocathodes. Here, femtosecond time-resolved two-photon photoemission spectroscopy has been used to probe the electronic structure and dynamics of photoexcited charge carriers at the Cu2O surface as well as the interface between Cu2O and a platinum (Pt) adlayer. By referencing ultrafast energy-resolved surface sensitive spectroscopy to bulk data we identify the full bulk to surface transport dynamics for excited electrons rapidly localized within an intrinsic deep continuous defect band ranging from the whole crystal volume to the surface. No evidence of bulk electrons reaching the surface at the conduction band level is found resulting into a substantial loss of their energy through ultrafast trapping. Our results uncover main factors limiting the energy conversion processes in Cu2O and provide guidance for future material development.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-10143-x Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10143-x
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-10143-x
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().