EconPapers    
Economics at your fingertips  
 

Detection of DNA base modifications by deep recurrent neural network on Oxford Nanopore sequencing data

Qian Liu, Li Fang, Guoliang Yu, Depeng Wang, Chuan-Le Xiao () and Kai Wang ()
Additional contact information
Qian Liu: Children’s Hospital of Philadelphia
Li Fang: Children’s Hospital of Philadelphia
Guoliang Yu: Sun Yat-sen University
Depeng Wang: Grandomics Biosciences
Chuan-Le Xiao: Sun Yat-sen University
Kai Wang: Children’s Hospital of Philadelphia

Nature Communications, 2019, vol. 10, issue 1, 1-11

Abstract: Abstract DNA base modifications, such as C5-methylcytosine (5mC) and N6-methyldeoxyadenosine (6mA), are important types of epigenetic regulations. Short-read bisulfite sequencing and long-read PacBio sequencing have inherent limitations to detect DNA modifications. Here, using raw electric signals of Oxford Nanopore long-read sequencing data, we design DeepMod, a bidirectional recurrent neural network (RNN) with long short-term memory (LSTM) to detect DNA modifications. We sequence a human genome HX1 and a Chlamydomonas reinhardtii genome using Nanopore sequencing, and then evaluate DeepMod on three types of genomes (Escherichia coli, Chlamydomonas reinhardtii and human genomes). For 5mC detection, DeepMod achieves average precision up to 0.99 for both synthetically introduced and naturally occurring modifications. For 6mA detection, DeepMod achieves ~0.9 average precision on Escherichia coli data, and have improved performance than existing methods on Chlamydomonas reinhardtii data. In conclusion, DeepMod performs well for genome-scale detection of DNA modifications and will facilitate epigenetic analysis on diverse species.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-10168-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10168-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-10168-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10168-2