A colloidal quantum dot infrared photodetector and its use for intraband detection
Clément Livache,
Bertille Martinez,
Nicolas Goubet,
Charlie Gréboval,
Junling Qu,
Audrey Chu,
Sébastien Royer,
Sandrine Ithurria,
Mathieu G. Silly,
Benoit Dubertret and
Emmanuel Lhuillier ()
Additional contact information
Clément Livache: Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP
Bertille Martinez: Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP
Nicolas Goubet: Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP
Charlie Gréboval: Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP
Junling Qu: Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP
Audrey Chu: Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP
Sébastien Royer: Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP
Sandrine Ithurria: PSL Research University, Sorbonne Université, CNRS
Mathieu G. Silly: Synchrotron-SOLEIL, Saint-Aubin, BP48
Benoit Dubertret: PSL Research University, Sorbonne Université, CNRS
Emmanuel Lhuillier: Sorbonne Université, CNRS, Institut des NanoSciences de Paris, INSP
Nature Communications, 2019, vol. 10, issue 1, 1-10
Abstract:
Abstract Wavefunction engineering using intraband transition is the most versatile strategy for the design of infrared devices. To date, this strategy is nevertheless limited to epitaxially grown semiconductors, which lead to prohibitive costs for many applications. Meanwhile, colloidal nanocrystals have gained a high level of maturity from a material perspective and now achieve a broad spectral tunability. Here, we demonstrate that the energy landscape of quantum well and quantum dot infrared photodetectors can be mimicked from a mixture of mercury selenide and mercury telluride nanocrystals. This metamaterial combines intraband absorption with enhanced transport properties (i.e. low dark current, fast time response and large thermal activation energy). We also integrate this material into a photodiode with the highest infrared detection performances reported for an intraband-based nanocrystal device. This work demonstrates that the concept of wavefunction engineering at the device scale can now be applied for the design of complex colloidal nanocrystal-based devices.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-10170-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10170-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-10170-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().