EconPapers    
Economics at your fingertips  
 

Solar energy storage at an atomically defined organic-oxide hybrid interface

Christian Schuschke, Chantal Hohner, Martyn Jevric, Anne Ugleholdt Petersen, Zhihang Wang, Matthias Schwarz, Miroslav Kettner, Fabian Waidhas, Lukas Fromm, Christopher J. Sumby, Andreas Görling, Olaf Brummel, Kasper Moth-Poulsen and Jörg Libuda ()
Additional contact information
Christian Schuschke: Friedrich-Alexander-Universität Erlangen-Nürnberg
Chantal Hohner: Friedrich-Alexander-Universität Erlangen-Nürnberg
Martyn Jevric: Chalmers University of Technology
Anne Ugleholdt Petersen: Chalmers University of Technology
Zhihang Wang: Chalmers University of Technology
Matthias Schwarz: Friedrich-Alexander-Universität Erlangen-Nürnberg
Miroslav Kettner: Friedrich-Alexander-Universität Erlangen-Nürnberg
Fabian Waidhas: Friedrich-Alexander-Universität Erlangen-Nürnberg
Lukas Fromm: Friedrich-Alexander-Universität Erlangen-Nürnberg
Christopher J. Sumby: The University of Adelaide
Andreas Görling: Friedrich-Alexander-Universität Erlangen-Nürnberg
Olaf Brummel: Friedrich-Alexander-Universität Erlangen-Nürnberg
Kasper Moth-Poulsen: Chalmers University of Technology
Jörg Libuda: Friedrich-Alexander-Universität Erlangen-Nürnberg

Nature Communications, 2019, vol. 10, issue 1, 1-10

Abstract: Abstract Molecular photoswitches provide an extremely simple solution for solar energy conversion and storage. To convert stored energy to electricity, however, the photoswitch has to be coupled to a semiconducting electrode. In this work, we report on the assembly of an operational solar-energy-storing organic-oxide hybrid interface, which consists of a tailor-made molecular photoswitch and an atomically-defined semiconducting oxide film. The synthesized norbornadiene derivative 2-cyano-3-(4-carboxyphenyl)norbornadiene (CNBD) was anchored to a well-ordered Co3O4(111) surface by physical vapor deposition in ultrahigh vacuum. Using a photochemical infrared reflection absorption spectroscopy experiment, we demonstrate that the anchored CNBD monolayer remains operational, i.e., can be photo-converted to its energy-rich counterpart 2-cyano-3-(4-carboxyphenyl)quadricyclane (CQC). We show that the activation barrier for energy release remains unaffected by the anchoring reaction and the anchored photoswitch can be charged and discharged with high reversibility. Our atomically-defined solar-energy-storing model interface enables detailed studies of energy conversion processes at organic/oxide hybrid interfaces.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-10263-4 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10263-4

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-10263-4

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10263-4