Impact of molecular quadrupole moments on the energy levels at organic heterojunctions
Martin Schwarze (),
Karl Sebastian Schellhammer,
Katrin Ortstein,
Johannes Benduhn,
Christopher Gaul,
Alexander Hinderhofer,
Lorena Perdigón Toro,
Reinhard Scholz,
Jonas Kublitski,
Steffen Roland,
Matthias Lau,
Carl Poelking,
Denis Andrienko,
Gianaurelio Cuniberti,
Frank Schreiber,
Dieter Neher,
Koen Vandewal,
Frank Ortmann () and
Karl Leo ()
Additional contact information
Martin Schwarze: Technische Universität Dresden
Karl Sebastian Schellhammer: Technische Universität Dresden
Katrin Ortstein: Technische Universität Dresden
Johannes Benduhn: Technische Universität Dresden
Christopher Gaul: Technische Universität Dresden
Alexander Hinderhofer: University of Tübingen
Lorena Perdigón Toro: University of Potsdam
Reinhard Scholz: Technische Universität Dresden
Jonas Kublitski: Technische Universität Dresden
Steffen Roland: University of Potsdam
Matthias Lau: Technische Universität Dresden
Carl Poelking: Max Planck Institute for Polymer Research
Denis Andrienko: Max Planck Institute for Polymer Research
Gianaurelio Cuniberti: Technische Universität Dresden
Frank Schreiber: University of Tübingen
Dieter Neher: University of Potsdam
Koen Vandewal: Technische Universität Dresden
Frank Ortmann: Technische Universität Dresden
Karl Leo: Technische Universität Dresden
Nature Communications, 2019, vol. 10, issue 1, 1-9
Abstract:
Abstract The functionality of organic semiconductor devices crucially depends on molecular energies, namely the ionisation energy and the electron affinity. Ionisation energy and electron affinity values of thin films are, however, sensitive to film morphology and composition, making their prediction challenging. In a combined experimental and simulation study on zinc-phthalocyanine and its fluorinated derivatives, we show that changes in ionisation energy as a function of molecular orientation in neat films or mixing ratio in blends are proportional to the molecular quadrupole component along the π-π-stacking direction. We apply these findings to organic solar cells and demonstrate how the electrostatic interactions can be tuned to optimise the energy of the charge-transfer state at the donor−acceptor interface and the dissociation barrier for free charge carrier generation. The confirmation of the correlation between interfacial energies and quadrupole moments for other materials indicates its relevance for small molecules and polymers.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-10435-2 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10435-2
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-10435-2
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().