EconPapers    
Economics at your fingertips  
 

Metal-organic framework crystal-glass composites

Jingwei Hou, Christopher W. Ashling, Sean M. Collins, Andraž Krajnc, Chao Zhou, Louis Longley, Duncan N. Johnstone, Philip A. Chater, Shichun Li, Marie-Vanessa Coulet, Philip L. Llewellyn, François-Xavier Coudert, David A. Keen, Paul A. Midgley, Gregor Mali, Vicki Chen and Thomas D. Bennett ()
Additional contact information
Jingwei Hou: University of Cambridge
Christopher W. Ashling: University of Cambridge
Sean M. Collins: University of Cambridge
Andraž Krajnc: National Institute of Chemistry
Chao Zhou: University of Cambridge
Louis Longley: University of Cambridge
Duncan N. Johnstone: University of Cambridge
Philip A. Chater: Harwell Science & Innovation Campus
Shichun Li: University of Cambridge
Marie-Vanessa Coulet: Aix-Marseille Univ, CNRS, MADIREL (UMR 7246)
Philip L. Llewellyn: Aix-Marseille Univ, CNRS, MADIREL (UMR 7246)
François-Xavier Coudert: PSL University, CNRS, Institut de Recherche de Chimie Paris
David A. Keen: ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus
Paul A. Midgley: University of Cambridge
Gregor Mali: National Institute of Chemistry
Vicki Chen: University of New South Wales
Thomas D. Bennett: University of Cambridge

Nature Communications, 2019, vol. 10, issue 1, 1-10

Abstract: Abstract The majority of research into metal-organic frameworks (MOFs) focuses on their crystalline nature. Recent research has revealed solid-liquid transitions within the family, which we use here to create a class of functional, stable and porous composite materials. Described herein is the design, synthesis, and characterisation of MOF crystal-glass composites, formed by dispersing crystalline MOFs within a MOF-glass matrix. The coordinative bonding and chemical structure of a MIL-53 crystalline phase are preserved within the ZIF-62 glass matrix. Whilst separated phases, the interfacial interactions between the closely contacted microdomains improve the mechanical properties of the composite glass. More significantly, the high temperature open pore phase of MIL-53, which spontaneously transforms to a narrow pore upon cooling in the presence of water, is stabilised at room temperature in the crystal-glass composite. This leads to a significant improvement of CO2 adsorption capacity.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-10470-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10470-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-10470-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10470-z