Engineering brain activity patterns by neuromodulator polytherapy for treatment of disorders
Mostafa Ghannad-Rezaie,
Peter M. Eimon,
Yuelong Wu and
Mehmet Fatih Yanik ()
Additional contact information
Mostafa Ghannad-Rezaie: Massachusetts Institute of Technology
Peter M. Eimon: Massachusetts Institute of Technology
Yuelong Wu: Massachusetts Institute of Technology
Mehmet Fatih Yanik: Massachusetts Institute of Technology
Nature Communications, 2019, vol. 10, issue 1, 1-13
Abstract:
Abstract Conventional drug screens and treatments often ignore the underlying complexity of brain network dysfunctions, resulting in suboptimal outcomes. Here we ask whether we can correct abnormal functional connectivity of the entire brain by identifying and combining multiple neuromodulators that perturb connectivity in complementary ways. Our approach avoids the combinatorial complexity of screening all drug combinations. We develop a high-speed platform capable of imaging more than 15000 neurons in 50ms to map the entire brain functional connectivity in large numbers of vertebrates under many conditions. Screening a panel of drugs in a zebrafish model of human Dravet syndrome, we show that even drugs with related mechanisms of action can modulate functional connectivity in significantly different ways. By clustering connectivity fingerprints, we algorithmically select small subsets of complementary drugs and rapidly identify combinations that are significantly more effective at correcting abnormal networks and reducing spontaneous seizures than monotherapies, while minimizing behavioral side effects. Even at low concentrations, our polytherapy performs superior to individual drugs even at highest tolerated concentrations.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-10541-1 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10541-1
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-10541-1
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().