EconPapers    
Economics at your fingertips  
 

Coordination mode engineering in stacked-nanosheet metal–organic frameworks to enhance catalytic reactivity and structural robustness

Chuanhui Huang, Juncai Dong, Weiming Sun, Zhenjie Xue, Jun Ma, Lirong Zheng, Cong Liu, Xiao Li, Kang Zhou, Xuezhi Qiao, Qian Song, Wende Ma, Lan Zhang, Zhenyu Lin () and Tie Wang ()
Additional contact information
Chuanhui Huang: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems and Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun
Juncai Dong: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
Weiming Sun: Fujian Medical University
Zhenjie Xue: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems and Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun
Jun Ma: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems and Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun
Lirong Zheng: Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences
Cong Liu: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems and Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun
Xiao Li: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems and Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun
Kang Zhou: State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences
Xuezhi Qiao: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems and Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun
Qian Song: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems and Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun
Wende Ma: Fuzhou University
Lan Zhang: Fuzhou University
Zhenyu Lin: Fuzhou University
Tie Wang: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems and Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, #2 Zhongguancun

Nature Communications, 2019, vol. 10, issue 1, 1-10

Abstract: Abstract Optimising the supported modes of atom or ion dispersal onto substrates, to synchronously integrate high reactivity and robust stability in catalytic conversion, is an important yet challenging area of research. Here, theoretical calculations first show that three-coordinated copper (Cu) sites have higher activity than four-, two- and one-coordinated sites. A site-selective etching method is then introduced to prepare a stacked-nanosheet metal–organic framework (MOF, CASFZU-1)-based catalyst with precisely controlled coordination number sites on its surface. The turnover frequency value of CASFZU-1 with three-coordinated Cu sites, for cycloaddition reaction of CO2 with epoxides, greatly exceed those of other catalysts reported to date. Five successive catalytic cycles reveal the superior stability of CASFZU-1 in the stacked-nanosheet structure. This study could form a basis for the rational design and construction of highly efficient and robust catalysts in the field of single-atom or ion catalysis.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-10547-9 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10547-9

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-10547-9

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10547-9