Correlations as a resource in quantum thermodynamics
Facundo Sapienza,
Federico Cerisola () and
Augusto J. Roncaglia ()
Additional contact information
Facundo Sapienza: Universidad de Buenos Aires
Federico Cerisola: Universidad de Buenos Aires
Augusto J. Roncaglia: Universidad de Buenos Aires
Nature Communications, 2019, vol. 10, issue 1, 1-7
Abstract:
Abstract The presence of correlations in physical systems can be a valuable resource for many quantum information tasks. They are also relevant in thermodynamic transformations, and their creation is usually associated to some energetic cost. In this work, we study the role of correlations in the thermodynamic process of state formation in the single-shot regime, and find that correlations can also be viewed as a resource. First, we show that the energetic cost of creating multiple copies of a given state can be reduced by allowing correlations in the final state. We obtain the minimum cost for every finite number of subsystems, and then we show that this feature is not restricted to the case of copies. More generally, we demonstrate that in the asymptotic limit, by allowing a logarithmic amount of correlations, we can recover standard results where the free energy quantifies this minimum cost.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-10572-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10572-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-10572-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().