EconPapers    
Economics at your fingertips  
 

Site-selectively generated photon emitters in monolayer MoS2 via local helium ion irradiation

J. Klein (), M. Lorke, M. Florian, F. Sigger, L. Sigl, S. Rey, J. Wierzbowski, J. Cerne, K. Müller, E. Mitterreiter, P. Zimmermann, T. Taniguchi, K. Watanabe, U. Wurstbauer, M. Kaniber, M. Knap, R. Schmidt, J. J. Finley () and A. W. Holleitner ()
Additional contact information
J. Klein: Technische Universität München
M. Lorke: Universität Bremen
M. Florian: Universität Bremen
F. Sigger: Technische Universität München
L. Sigl: Technische Universität München
S. Rey: Technische Universität München
J. Wierzbowski: Technische Universität München
J. Cerne: University at Buffalo, The State University of New York
K. Müller: Technische Universität München
E. Mitterreiter: Technische Universität München
P. Zimmermann: Technische Universität München
T. Taniguchi: National Institute for Materials Science
K. Watanabe: National Institute for Materials Science
U. Wurstbauer: Technische Universität München
M. Kaniber: Technische Universität München
M. Knap: Technical University of Munich
R. Schmidt: Max-Planck-Institut für Quantenoptik
J. J. Finley: Technische Universität München
A. W. Holleitner: Technische Universität München

Nature Communications, 2019, vol. 10, issue 1, 1-8

Abstract: Abstract Quantum light sources in solid-state systems are of major interest as a basic ingredient for integrated quantum photonic technologies. The ability to tailor quantum emitters via site-selective defect engineering is essential for realizing scalable architectures. However, a major difficulty is that defects need to be controllably positioned within the material. Here, we overcome this challenge by controllably irradiating monolayer MoS2 using a sub-nm focused helium ion beam to deterministically create defects. Subsequent encapsulation of the ion exposed MoS2 flake with high-quality hBN reveals spectrally narrow emission lines that produce photons in the visible spectral range. Based on ab-initio calculations we interpret these emission lines as stemming from the recombination of highly localized electron–hole complexes at defect states generated by the local helium ion exposure. Our approach to deterministically write optically active defect states in a single transition metal dichalcogenide layer provides a platform for realizing exotic many-body systems, including coupled single-photon sources and interacting exciton lattices that may allow the exploration of Hubbard physics.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-10632-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10632-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-10632-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10632-z