Secure quantum remote state preparation of squeezed microwave states
S. Pogorzalek (),
K. G. Fedorov (),
M. Xu,
A. Parra-Rodriguez,
M. Sanz,
M. Fischer,
E. Xie,
K. Inomata,
Y. Nakamura,
E. Solano,
A. Marx,
F. Deppe and
R. Gross ()
Additional contact information
S. Pogorzalek: Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
K. G. Fedorov: Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
M. Xu: Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
A. Parra-Rodriguez: University of the Basque Country UPV/EHU
M. Sanz: University of the Basque Country UPV/EHU
M. Fischer: Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
E. Xie: Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
K. Inomata: RIKEN Center for Emergent Matter Science (CEMS)
Y. Nakamura: RIKEN Center for Emergent Matter Science (CEMS)
E. Solano: University of the Basque Country UPV/EHU
A. Marx: Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
F. Deppe: Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
R. Gross: Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften
Nature Communications, 2019, vol. 10, issue 1, 1-6
Abstract:
Abstract Quantum communication protocols based on nonclassical correlations can be more efficient than known classical methods and offer intrinsic security over direct state transfer. In particular, remote state preparation aims at the creation of a desired and known quantum state at a remote location using classical communication and quantum entanglement. We present an experimental realization of deterministic continuous-variable remote state preparation in the microwave regime over a distance of 35 cm. By employing propagating two-mode squeezed microwave states and feedforward, we achieve the remote preparation of squeezed states with up to 1.6 dB of squeezing below the vacuum level. Finally, security of remote state preparation is investigated by using the concept of the one-time pad and measuring the von Neumann entropies. We find nearly identical values for the entropy of the remotely prepared state and the respective conditional entropy given the classically communicated information and, thus, demonstrate close-to-perfect security.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-10727-7 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10727-7
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-10727-7
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().