EconPapers    
Economics at your fingertips  
 

Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon

Yanxiao Li, Shuohan Huang, Congjie Wei, Chenglin Wu () and Vadym N. Mochalin ()
Additional contact information
Yanxiao Li: Missouri University of Science and Technology
Shuohan Huang: Missouri University of Science and Technology
Congjie Wei: Missouri University of Science and Technology
Chenglin Wu: Missouri University of Science and Technology
Vadym N. Mochalin: Missouri University of Science and Technology

Nature Communications, 2019, vol. 10, issue 1, 1-8

Abstract: Abstract Two-dimensional transition metal carbides (MXenes) have attracted a great interest of the research community as a relatively recently discovered large class of materials with unique electronic and optical properties. Understanding of adhesion between MXenes and various substrates is critically important for MXene device fabrication and performance. We report results of direct atomic force microscopy (AFM) measurements of adhesion of two MXenes (Ti3C2Tx and Ti2CTx) with a SiO2 coated Si spherical tip. The Maugis-Dugdale theory was applied to convert the AFM measured adhesion force to adhesion energy, while taking into account surface roughness. The obtained adhesion energies were compared with those for mono-, bi-, and tri-layer graphene, as well as SiO2 substrates. The average adhesion energies for the MXenes are 0.90 ± 0.03 J m−2 and 0.40 ± 0.02 J m−2 for thicker Ti3C2Tx and thinner Ti2CTx, respectively, which is of the same order of magnitude as that between graphene and silica tip.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-10982-8 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10982-8

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-10982-8

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-10982-8