Tailor-made nanostructures bridging chaos and order for highly efficient white organic light-emitting diodes
Yungui Li,
Milan Kovačič,
Jasper Westphalen,
Steffen Oswald,
Zaifei Ma,
Christian Hänisch,
Paul-Anton Will,
Lihui Jiang,
Manuela Junghaehnel,
Reinhard Scholz,
Simone Lenk and
Sebastian Reineke ()
Additional contact information
Yungui Li: Technische Universität Dresden
Milan Kovačič: University of Ljubljana, Faculty of Electrical Engineering
Jasper Westphalen: Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Steffen Oswald: Institute for Complex Materials, Leibniz IFW Dresden
Zaifei Ma: Donghua University
Christian Hänisch: Technische Universität Dresden
Paul-Anton Will: Technische Universität Dresden
Lihui Jiang: Technische Universität Dresden
Manuela Junghaehnel: Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP
Reinhard Scholz: Technische Universität Dresden
Simone Lenk: Technische Universität Dresden
Sebastian Reineke: Technische Universität Dresden
Nature Communications, 2019, vol. 10, issue 1, 1-11
Abstract:
Abstract Organic light-emitting diodes (OLEDs) suffer from notorious light trapping, resulting in only moderate external quantum efficiencies. Here, we report a facile, scalable, lithography-free method to generate controllable nanostructures with directional randomness and dimensional order, significantly boosting the efficiency of white OLEDs. Mechanical deformations form on the surface of poly(dimethylsiloxane) in response to compressive stress release, initialized by reactive ions etching with periodicity and depth distribution ranging from dozens of nanometers to micrometers. We demonstrate the possibility of independently tuning the average depth and the dominant periodicity. Integrating these nanostructures into a two-unit tandem white organic light-emitting diode, a maximum external quantum efficiency of 76.3% and a luminous efficacy of 95.7 lm W−1 are achieved with extracted substrate modes. The enhancement factor of 1.53 ± 0.12 at 10,000 cd m−2 is obtained. An optical model is built by considering the dipole orientation, emitting wavelength, and the dipole position on the sinusoidal nanotexture.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-11032-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11032-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-11032-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().