EconPapers    
Economics at your fingertips  
 

Rapid fabrication of reinforced and cell-laden vascular grafts structurally inspired by human coronary arteries

Tamara L. Akentjew, Claudia Terraza, Cristian Suazo, Jekaterina Maksimcuka, Camila A. Wilkens, Francisco Vargas, Gabriela Zavala, Macarena Ocaña, Javier Enrione, Claudio M. García-Herrera, Loreto M. Valenzuela, Jonny J. Blaker, Maroun Khoury and Juan Pablo Acevedo ()
Additional contact information
Tamara L. Akentjew: Universidad de los Andes
Claudia Terraza: Universidad de los Andes
Cristian Suazo: Universidad de los Andes
Jekaterina Maksimcuka: The University of Manchester
Camila A. Wilkens: Universidad de los Andes
Francisco Vargas: Pontificia Universidad Católica de Chile
Gabriela Zavala: Universidad de los Andes
Macarena Ocaña: Universidad de los Andes
Javier Enrione: Universidad de los Andes
Claudio M. García-Herrera: Universidad de Santiago de Chile
Loreto M. Valenzuela: Pontificia Universidad Católica de Chile
Jonny J. Blaker: The University of Manchester
Maroun Khoury: Universidad de los Andes
Juan Pablo Acevedo: Universidad de los Andes

Nature Communications, 2019, vol. 10, issue 1, 1-15

Abstract: Abstract Design strategies for small diameter vascular grafts are converging toward native-inspired tissue engineered grafts. A new automated technology is presented that combines a dip-spinning methodology for depositioning concentric cell-laden hydrogel layers, with an adapted solution blow spinning (SBS) device for intercalated placement of aligned reinforcement nanofibres. This additive manufacture approach allows the assembly of bio-inspired structural configurations of concentric cell patterns with fibres at specific angles and wavy arrangements. The middle and outer layers were tuned to structurally mimic the media and adventitia layers of native arteries, enabling the fabrication of small bore grafts that exhibit the J-shape mechanical response and compliance of human coronary arteries. This scalable automated system can fabricate cellularized multilayer grafts within 30 min. Grafts were evaluated by hemocompatibility studies and a preliminary in vivo carotid rabbit model. The dip-spinning-SBS technology generates constructs with native mechanical properties and cell-derived biological activities, critical for clinical bypass applications.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-11090-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11090-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-11090-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11090-3