The generation and use of recombinant extracellular vesicles as biological reference material
Edward Geeurickx,
Joeri Tulkens,
Bert Dhondt,
Jan Van Deun,
Lien Lippens,
Glenn Vergauwen,
Elisa Heyrman,
Delphine De Sutter,
Kris Gevaert,
Francis Impens,
Ilkka Miinalainen,
Pieter-Jan Van Bockstal,
Thomas De Beer,
Marca H. M. Wauben,
Esther N. M. Nolte-‘t-Hoen,
Katarzyna Bloch,
Johannes V. Swinnen,
Edwin van der Pol,
Rienk Nieuwland,
Geert Braems,
Nico Callewaert,
Pieter Mestdagh,
Jo Vandesompele,
Hannelore Denys,
Sven Eyckerman,
Olivier De Wever and
An Hendrix ()
Additional contact information
Edward Geeurickx: Ghent University
Joeri Tulkens: Ghent University
Bert Dhondt: Ghent University
Jan Van Deun: Ghent University
Lien Lippens: Ghent University
Glenn Vergauwen: Ghent University
Elisa Heyrman: Ghent University
Delphine De Sutter: Ghent University
Kris Gevaert: Cancer Research Institute Ghent
Francis Impens: Cancer Research Institute Ghent
Ilkka Miinalainen: University of Oulu
Pieter-Jan Van Bockstal: Ghent University
Thomas De Beer: Ghent University
Marca H. M. Wauben: Utrecht University
Esther N. M. Nolte-‘t-Hoen: Utrecht University
Katarzyna Bloch: University of Leuven
Johannes V. Swinnen: University of Leuven
Edwin van der Pol: Amsterdam University
Rienk Nieuwland: Amsterdam University
Geert Braems: Ghent University Hospital
Nico Callewaert: Cancer Research Institute Ghent
Pieter Mestdagh: Cancer Research Institute Ghent
Jo Vandesompele: Cancer Research Institute Ghent
Hannelore Denys: Cancer Research Institute Ghent
Sven Eyckerman: Cancer Research Institute Ghent
Olivier De Wever: Ghent University
An Hendrix: Ghent University
Nature Communications, 2019, vol. 10, issue 1, 1-12
Abstract:
Abstract Recent years have seen an increase of extracellular vesicle (EV) research geared towards biological understanding, diagnostics and therapy. However, EV data interpretation remains challenging owing to complexity of biofluids and technical variation introduced during sample preparation and analysis. To understand and mitigate these limitations, we generated trackable recombinant EV (rEV) as a biological reference material. Employing complementary characterization methods, we demonstrate that rEV are stable and bear physical and biochemical traits characteristic of sample EV. Furthermore, rEV can be quantified using fluorescence-, RNA- and protein-based technologies available in routine laboratories. Spiking rEV in biofluids allows recovery efficiencies of commonly implemented EV separation methods to be identified, intra-method and inter-user variability induced by sample handling to be defined, and to normalize and improve sensitivity of EV enumerations. We anticipate that rEV will aid EV-based sample preparation and analysis, data normalization, method development and instrument calibration in various research and biomedical applications.
Date: 2019
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.nature.com/articles/s41467-019-11182-0 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11182-0
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-11182-0
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().