EconPapers    
Economics at your fingertips  
 

Fast and covariate-adaptive method amplifies detection power in large-scale multiple hypothesis testing

Martin J. Zhang, Fei Xia and James Zou ()
Additional contact information
Martin J. Zhang: Stanford University
Fei Xia: Stanford University
James Zou: Stanford University

Nature Communications, 2019, vol. 10, issue 1, 1-11

Abstract: Abstract Multiple hypothesis testing is an essential component of modern data science. In many settings, in addition to the p-value, additional covariates for each hypothesis are available, e.g., functional annotation of variants in genome-wide association studies. Such information is ignored by popular multiple testing approaches such as the Benjamini-Hochberg procedure (BH). Here we introduce AdaFDR, a fast and flexible method that adaptively learns the optimal p-value threshold from covariates to significantly improve detection power. On eQTL analysis of the GTEx data, AdaFDR discovers 32% more associations than BH at the same false discovery rate. We prove that AdaFDR controls false discovery proportion and show that it makes substantially more discoveries while controlling false discovery rate (FDR) in extensive experiments. AdaFDR is computationally efficient and allows multi-dimensional covariates with both numeric and categorical values, making it broadly useful across many applications.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-11247-0 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11247-0

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-11247-0

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11247-0