A first-principles phase field method for quantitatively predicting multi-composition phase separation without thermodynamic empirical parameter
Swastibrata Bhattacharyya,
Ryoji Sahara and
Kaoru Ohno ()
Additional contact information
Swastibrata Bhattacharyya: Yokohama National University
Ryoji Sahara: National Institute for Materials Science (NIMS)
Kaoru Ohno: Yokohama National University
Nature Communications, 2019, vol. 10, issue 1, 1-10
Abstract:
Abstract To design tailored materials, it is highly desirable to predict microstructures of alloys without empirical parameter. Phase field models (PFMs) rely on parameters adjusted to match experimental information, while first-principles methods cannot directly treat the typical length scale of 10 μm. Combining density functional theory, cluster expansion theory and potential renormalization theory, we derive the free energy as a function of compositions and construct a parameter-free PFM, which can predict microstructures in high-temperature regions of alloy phase diagrams. Applying this method to Ni-Al alloys at 1027 °C, we succeed in reproducing evolution of microstructures as a function of only compositions without thermodynamic empirical parameter. The resulting patterns including cuboidal shaped precipitations are in excellent agreement with the experimental microstructures in each region of the Ni-Al phase diagram. Our method is in principle applicable to any kind of alloys as a reliable theoretical tool to predict microstructures of new materials.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-11248-z Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11248-z
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-11248-z
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().