EconPapers    
Economics at your fingertips  
 

Time-reversal symmetry breaking type-II Weyl state in YbMnBi2

Sergey Borisenko (), Daniil Evtushinsky, Quinn Gibson, Alexander Yaresko, Klaus Koepernik, Timur Kim, Mazhar Ali, Jeroen Brink, Moritz Hoesch, Alexander Fedorov, Erik Haubold, Yevhen Kushnirenko, Ivan Soldatov, Rudolf Schäfer and Robert J. Cava
Additional contact information
Sergey Borisenko: Leibniz IFW Dresden
Daniil Evtushinsky: Leibniz IFW Dresden
Quinn Gibson: Princeton University
Alexander Yaresko: Max-Planck-Institute for Solid State Research
Klaus Koepernik: Leibniz IFW Dresden
Timur Kim: Diamond Light Source
Mazhar Ali: Princeton University
Jeroen Brink: Leibniz IFW Dresden
Moritz Hoesch: Diamond Light Source
Alexander Fedorov: Leibniz IFW Dresden
Erik Haubold: Leibniz IFW Dresden
Yevhen Kushnirenko: Leibniz IFW Dresden
Ivan Soldatov: Institute for Metallic Materials, Leibniz IFW Dresden
Rudolf Schäfer: Institute for Metallic Materials, Leibniz IFW Dresden
Robert J. Cava: Princeton University

Nature Communications, 2019, vol. 10, issue 1, 1-10

Abstract: Abstract Spectroscopic detection of Dirac and Weyl fermions in real materials is vital for both, promising applications and fundamental bridge between high-energy and condensed-matter physics. While the presence of Dirac and noncentrosymmetric Weyl fermions is well established in many materials, the magnetic Weyl semimetals still escape direct experimental detection. In order to find a time-reversal symmetry breaking Weyl state we design two materials and present here experimental and theoretical evidence of realization of such a state in one of them, YbMnBi2. We model the time-reversal symmetry breaking observed by magnetization and magneto-optical microscopy measurements by canted antiferromagnetism and find a number of Weyl points. Using angle-resolved photoemission, we directly observe two pairs of Weyl points connected by the Fermi arcs. Our results not only provide a fundamental link between the two areas of physics, but also demonstrate the practical way to design novel materials with exotic properties.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-11393-5 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11393-5

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-11393-5

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11393-5