EconPapers    
Economics at your fingertips  
 

A flexible readout mechanism of human sensory representations

Daniel Birman () and Justin L. Gardner
Additional contact information
Daniel Birman: Stanford University
Justin L. Gardner: Stanford University

Nature Communications, 2019, vol. 10, issue 1, 1-13

Abstract: Abstract Attention can both enhance and suppress cortical sensory representations. However, changing sensory representations can also be detrimental to behavior. Behavioral consequences can be avoided by flexibly changing sensory readout, while leaving the representations unchanged. Here, we asked human observers to attend to and report about either one of two features which control the visibility of motion while making concurrent measurements of cortical activity with BOLD imaging (fMRI). We extend a well-established linking model to account for the relationship between these measurements and find that changes in sensory representation during directed attention are insufficient to explain perceptual reports. Adding a flexible downstream readout is necessary to best explain our data. Such a model implies that observers should be able to recover information about ignored features, a prediction which we confirm behaviorally. Thus, flexible readout is a critical component of the cortical implementation of human adaptive behavior.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-11448-7 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11448-7

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-11448-7

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11448-7