Physiologically relevant reconstitution of iron-sulfur cluster biosynthesis uncovers persulfide-processing functions of ferredoxin-2 and frataxin
Sylvain Gervason,
Djabir Larkem,
Amir Ben Mansour,
Thomas Botzanowski,
Christina S. Müller,
Ludovic Pecqueur,
Gwenaelle Le Pavec,
Agnès Delaunay-Moisan,
Omar Brun,
Jordi Agramunt,
Anna Grandas,
Marc Fontecave,
Volker Schünemann,
Sarah Cianférani,
Christina Sizun,
Michel B. Tolédano and
Benoit D’Autréaux ()
Additional contact information
Sylvain Gervason: Université Paris‐Saclay
Djabir Larkem: Université Paris‐Saclay
Amir Ben Mansour: Université Paris‐Saclay
Thomas Botzanowski: Université de Strasbourg, CNRS, IPHC UMR 7178
Christina S. Müller: Technische Universität Kaiserslautern
Ludovic Pecqueur: CNRS UMR 8229, PSL Research University
Gwenaelle Le Pavec: Université Paris‐Saclay
Agnès Delaunay-Moisan: Université Paris‐Saclay
Omar Brun: Universitat de Barcelona
Jordi Agramunt: Universitat de Barcelona
Anna Grandas: Universitat de Barcelona
Marc Fontecave: CNRS UMR 8229, PSL Research University
Volker Schünemann: Technische Universität Kaiserslautern
Sarah Cianférani: Université de Strasbourg, CNRS, IPHC UMR 7178
Christina Sizun: CNRS, Université Paris Saclay
Michel B. Tolédano: Université Paris‐Saclay
Benoit D’Autréaux: Université Paris‐Saclay
Nature Communications, 2019, vol. 10, issue 1, 1-12
Abstract:
Abstract Iron-sulfur (Fe-S) clusters are essential protein cofactors whose biosynthetic defects lead to severe diseases among which is Friedreich’s ataxia caused by impaired expression of frataxin (FXN). Fe-S clusters are biosynthesized on the scaffold protein ISCU, with cysteine desulfurase NFS1 providing sulfur as persulfide and ferredoxin FDX2 supplying electrons, in a process stimulated by FXN but not clearly understood. Here, we report the breakdown of this process, made possible by removing a zinc ion in ISCU that hinders iron insertion and promotes non-physiological Fe-S cluster synthesis from free sulfide in vitro. By binding zinc-free ISCU, iron drives persulfide uptake from NFS1 and allows persulfide reduction into sulfide by FDX2, thereby coordinating sulfide production with its availability to generate Fe-S clusters. FXN stimulates the whole process by accelerating persulfide transfer. We propose that this reconstitution recapitulates physiological conditions which provides a model for Fe-S cluster biosynthesis, clarifies the roles of FDX2 and FXN and may help develop Friedreich’s ataxia therapies.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-11470-9 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11470-9
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-11470-9
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().