Many-body simulation of two-dimensional electronic spectroscopy of excitons and trions in monolayer transition metal dichalcogenides
Roel Tempelaar () and
Timothy C. Berkelbach ()
Additional contact information
Roel Tempelaar: Columbia University
Timothy C. Berkelbach: Columbia University
Nature Communications, 2019, vol. 10, issue 1, 1-7
Abstract:
Abstract Indications of coherently interacting excitons and trions in doped transition metal dichalcogenides have been measured as quantum beats in two-dimensional electronic spectroscopy, but the microscopic principles underlying the optical signals of exciton-trion coherence remain to be clarified. Here we present calculations of two-dimensional spectra of such monolayers based on a microscopic many-body formalism. We use a parameterized band structure and a static model dielectric function, although a full ab initio implementation of our formalism is possible in principle. Our simulated spectra are in excellent agreement with experiments, including the quantum beats, while revealing the interplay between excitons and trions in molybdenum- and tungsten-based transition metal dichalcogenides. Quantum beats are confirmed to unambiguously reflect the exciton-trion coherence time in molybdenum compounds, but are shown to provide a lower bound to the coherence time for tungsten analogues due to a destructive interference from coexisting singlet and triplet trions.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-11497-y Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11497-y
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-11497-y
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().