CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine
Min Wang,
Kristian Torbensen,
Danielle Salvatore,
Shaoxuan Ren,
Dorian Joulié,
Fabienne Dumoulin,
Daniela Mendoza,
Benedikt Lassalle-Kaiser,
Umit Işci (),
Curtis P. Berlinguette () and
Marc Robert ()
Additional contact information
Min Wang: Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS
Kristian Torbensen: Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS
Danielle Salvatore: The University of British Columbia
Shaoxuan Ren: The University of British Columbia
Dorian Joulié: Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS
Fabienne Dumoulin: Gebze Technical University, Department of Chemistry
Daniela Mendoza: Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS
Benedikt Lassalle-Kaiser: Synchrotron SOLEIL, L’Orme des Merisiers, Saint-Aubin
Umit Işci: Gebze Technical University, Department of Chemistry
Curtis P. Berlinguette: The University of British Columbia
Marc Robert: Université de Paris, Laboratoire d’Electrochimie Moléculaire, CNRS
Nature Communications, 2019, vol. 10, issue 1, 1-8
Abstract:
Abstract Molecular catalysts that combine high product selectivity and high current density for CO2 electrochemical reduction to CO or other chemical feedstocks are urgently needed. While earth-abundant metal-based molecular electrocatalysts with high selectivity for CO2 to CO conversion are known, they are characterized by current densities that are significantly lower than those obtained with solid-state metal materials. Here, we report that a cobalt phthalocyanine bearing a trimethyl ammonium group appended to the phthalocyanine macrocycle is capable of reducing CO2 to CO in water with high activity over a broad pH range from 4 to 14. In a flow cell configuration operating in basic conditions, CO production occurs with excellent selectivity (ca. 95%), and good stability with a maximum partial current density of 165 mA cm−2 (at −0.92 V vs. RHE), matching the most active noble metal-based nanocatalysts. These results represent state-of-the-art performance for electrolytic carbon dioxide reduction by a molecular catalyst.
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-11542-w Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11542-w
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-11542-w
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().