EconPapers    
Economics at your fingertips  
 

Shape-memory effects in molecular crystals

Ejaz Ahmed, Durga Prasad Karothu, Mark Warren and Panče Naumov ()
Additional contact information
Ejaz Ahmed: New York University Abu Dhabi
Durga Prasad Karothu: New York University Abu Dhabi
Mark Warren: Diamond Light Source
Panče Naumov: New York University Abu Dhabi

Nature Communications, 2019, vol. 10, issue 1, 1-9

Abstract: Abstract Molecular crystals can be bent elastically by expansion or plastically by delamination into slabs that glide along slip planes. Here we report that upon bending, terephthalic acid crystals can undergo a mechanically induced phase transition without delamination and their overall crystal integrity is retained. Such plastically bent crystals act as bimorphs and their phase uniformity can be recovered thermally by taking the crystal over the phase transition temperature. This recovers the original straight shape and the crystal can be bent by a reverse thermal treatment, resulting in shape memory effects akin of those observed with some metal alloys and polymers. We anticipate that similar memory and restorative effects are common for other molecular crystals having metastable polymorphs. The results demonstrate the advantage of using intermolecular interactions to accomplish mechanically adaptive properties with organic solids that bridge the gap between mesophasic and inorganic materials in the materials property space.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-11612-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11612-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-11612-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11612-z