EconPapers    
Economics at your fingertips  
 

Detonation synthesis of carbon nano-onions via liquid carbon condensation

M. Bagge-Hansen, S. Bastea, J. A. Hammons, M. H. Nielsen, L. M. Lauderbach, R. L. Hodgin, P. Pagoria, C. May, S. Aloni, A. Jones, W. L. Shaw, E. V. Bukovsky, N. Sinclair, R. L. Gustavsen, E. B. Watkins, B. J. Jensen, D. M. Dattelbaum, M. A. Firestone, R. C. Huber, B. S. Ringstrand, J. R. I. Lee, T. van Buuren, L. E. Fried and T. M. Willey ()
Additional contact information
M. Bagge-Hansen: Lawrence Livermore National Laboratory
S. Bastea: Lawrence Livermore National Laboratory
J. A. Hammons: Lawrence Livermore National Laboratory
M. H. Nielsen: Lawrence Livermore National Laboratory
L. M. Lauderbach: Lawrence Livermore National Laboratory
R. L. Hodgin: Lawrence Livermore National Laboratory
P. Pagoria: Lawrence Livermore National Laboratory
C. May: Lawrence Livermore National Laboratory
S. Aloni: The Molecular Foundry, Lawrence Berkeley National Laboratory
A. Jones: Lawrence Livermore National Laboratory
W. L. Shaw: Lawrence Livermore National Laboratory
E. V. Bukovsky: Lawrence Livermore National Laboratory
N. Sinclair: Washington State University
R. L. Gustavsen: Los Alamos National Laboratory
E. B. Watkins: Los Alamos National Laboratory
B. J. Jensen: Los Alamos National Laboratory
D. M. Dattelbaum: Los Alamos National Laboratory
M. A. Firestone: Los Alamos National Laboratory
R. C. Huber: Los Alamos National Laboratory
B. S. Ringstrand: Los Alamos National Laboratory
J. R. I. Lee: Lawrence Livermore National Laboratory
T. van Buuren: Lawrence Livermore National Laboratory
L. E. Fried: Lawrence Livermore National Laboratory
T. M. Willey: Lawrence Livermore National Laboratory

Nature Communications, 2019, vol. 10, issue 1, 1-8

Abstract: Abstract Transit through the carbon liquid phase has significant consequences for the subsequent formation of solid nanocarbon detonation products. We report dynamic measurements of liquid carbon condensation and solidification into nano-onions over ∽200 ns by analysis of time-resolved, small-angle X-ray scattering data acquired during detonation of a hydrogen-free explosive, DNTF (3,4-bis(3-nitrofurazan-4-yl)furoxan). Further, thermochemical modeling predicts a direct liquid to solid graphite phase transition for DNTF products ~200 ns post-detonation. Solid detonation products were collected and characterized by high-resolution electron microscopy to confirm the abundance of carbon nano-onions with an average diameter of ∽10 nm, matching the dynamic measurements. We analyze other carbon-rich explosives by similar methods to systematically explore different regions of the carbon phase diagram traversed during detonation. Our results suggest a potential pathway to the efficient production of carbon nano-onions, while offering insight into the phase transformation kinetics of liquid carbon under extreme pressures and temperatures.

Date: 2019
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.nature.com/articles/s41467-019-11666-z Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11666-z

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-11666-z

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11666-z