EconPapers    
Economics at your fingertips  
 

Dispersion relation of the collective excitations in a resonantly driven polariton fluid

Petr Stepanov, Ivan Amelio, Jean-Guy Rousset, Jacqueline Bloch, Aristide Lemaître, Alberto Amo, Anna Minguzzi, Iacopo Carusotto and Maxime Richard ()
Additional contact information
Petr Stepanov: Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Ivan Amelio: INO-CNR BEC Center and Dipartimento di Fisica, Universita` di Trento
Jean-Guy Rousset: Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel
Jacqueline Bloch: Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay
Aristide Lemaître: Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Sud, Université Paris-Saclay
Alberto Amo: Univ. Lille, CNRS, Physique des Lasers Atomes et Molécules
Anna Minguzzi: Univ. Grenoble Alpes, CNRS, LPMMC
Iacopo Carusotto: INO-CNR BEC Center and Dipartimento di Fisica, Universita` di Trento
Maxime Richard: Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel

Nature Communications, 2019, vol. 10, issue 1, 1-8

Abstract: Abstract Exciton-polaritons in semiconductor microcavities constitute the archetypal realization of a quantum fluid of light. Under coherent optical drive, remarkable effects such as superfluidity, dark solitons or the nucleation of vortices have been observed, and can be all understood as specific manifestations of the condensate collective excitations. In this work, we perform a Brillouin scattering experiment to measure their dispersion relation $$\omega ({\bf{k}})$$ ω ( k ) directly. The results, such as a speed of sound which is apparently twice too low, cannot be explained upon considering the polariton condensate alone. In a combined theoretical and experimental analysis, we demonstrate that the presence of an excitonic reservoir alongside the polariton condensate has a dramatic influence on the characteristics of the quantum fluid, and explains our measurement quantitatively. This work clarifies the role of such a reservoir in polariton quantum hydrodynamics. It also provides an unambiguous tool to determine the condensate-to-reservoir fraction in the quantum fluid, and sets an accurate framework to approach ideas for polariton-based quantum-optical applications.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-11886-3 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11886-3

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-11886-3

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11886-3