EconPapers    
Economics at your fingertips  
 

Colloidal fibers and rings by cooperative assembly

Joon Suk Oh, Sangmin Lee, Sharon C. Glotzer (), Gi-Ra Yi () and David J. Pine ()
Additional contact information
Joon Suk Oh: New York University
Sangmin Lee: University of Michigan
Sharon C. Glotzer: University of Michigan
Gi-Ra Yi: New York University
David J. Pine: New York University

Nature Communications, 2019, vol. 10, issue 1, 1-10

Abstract: Abstract Janus colloids with one attractive patch on an otherwise repulsive particle surface serve as model systems to explore structure formation of particles with chemically heterogeneous surfaces such as proteins. While there are numerous computer studies, there are few experimental realizations due to a lack of means to produce such colloids with a well-controlled variable Janus balance. Here, we report a simple scalable method to precisely vary the Janus balance over a wide range and selectively functionalize one patch with DNA. We observe, via experiment and simulation, the dynamic formation of diverse superstructures: colloidal micelles, chains, or bilayers, depending on the Janus balance. Flexible dimer chains form through cooperative polymerization while trimer chains form by a two-stage process, first by cooperative polymerization into disordered aggregates followed by condensation into more ordered stiff trimer chains. Introducing substrate binding through depletion catalyzes dimer chains to form nonequilibrium rings that otherwise do not form.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-11915-1 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11915-1

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-11915-1

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-11915-1