EconPapers    
Economics at your fingertips  
 

Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields

M. Goryca, J. Li, A. V. Stier, T. Taniguchi, K. Watanabe, E. Courtade, S. Shree, C. Robert, B. Urbaszek, X. Marie and S. A. Crooker ()
Additional contact information
M. Goryca: Los Alamos National Lab
J. Li: Los Alamos National Lab
A. V. Stier: Los Alamos National Lab
T. Taniguchi: National Institute for Materials Science
K. Watanabe: National Institute for Materials Science
E. Courtade: Universite de Toulouse, INSA-CNRS-UPS, LPCNO
S. Shree: Universite de Toulouse, INSA-CNRS-UPS, LPCNO
C. Robert: Universite de Toulouse, INSA-CNRS-UPS, LPCNO
B. Urbaszek: Universite de Toulouse, INSA-CNRS-UPS, LPCNO
X. Marie: Universite de Toulouse, INSA-CNRS-UPS, LPCNO
S. A. Crooker: Los Alamos National Lab

Nature Communications, 2019, vol. 10, issue 1, 1-12

Abstract: Abstract In semiconductor physics, many essential optoelectronic material parameters can be experimentally revealed via optical spectroscopy in sufficiently large magnetic fields. For monolayer transition-metal dichalcogenide semiconductors, this field scale is substantial—tens of teslas or more—due to heavy carrier masses and huge exciton binding energies. Here we report absorption spectroscopy of monolayer $${{\rm{MoS}}}_{2},{{\rm{MoSe}}}_{2},{{\rm{MoTe}}}_{2}$$ MoS 2 , MoSe 2 , MoTe 2 , and $${{\rm{WS}}}_{2}$$ WS 2 in very high magnetic fields to 91 T. We follow the diamagnetic shifts and valley Zeeman splittings of not only the exciton’s $$1s$$ 1 s ground state but also its excited $$2s,3s,\ldots ,ns$$ 2 s , 3 s , … , n s Rydberg states. This provides a direct experimental measure of the effective (reduced) exciton masses and dielectric properties. Exciton binding energies, exciton radii, and free-particle bandgaps are also determined. The measured exciton masses are heavier than theoretically predicted, especially for Mo-based monolayers. These results provide essential and quantitative parameters for the rational design of opto-electronic van der Waals heterostructures incorporating 2D semiconductors.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-12180-y Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12180-y

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-12180-y

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12180-y