EconPapers    
Economics at your fingertips  
 

Stable memory with unstable synapses

Lee Susman (), Naama Brenner () and Omri Barak ()
Additional contact information
Lee Susman: Technion Israel Institute of Technology
Naama Brenner: Technion Israel Institute of Technology
Omri Barak: Technion Israel Institute of Technology

Nature Communications, 2019, vol. 10, issue 1, 1-9

Abstract: Abstract What is the physiological basis of long-term memory? The prevailing view in Neuroscience attributes changes in synaptic efficacy to memory acquisition, implying that stable memories correspond to stable connectivity patterns. However, an increasing body of experimental evidence points to significant, activity-independent fluctuations in synaptic strengths. How memories can survive these fluctuations and the accompanying stabilizing homeostatic mechanisms is a fundamental open question. Here we explore the possibility of memory storage within a global component of network connectivity, while individual connections fluctuate. We find that homeostatic stabilization of fluctuations differentially affects different aspects of network connectivity. Specifically, memories stored as time-varying attractors of neural dynamics are more resilient to erosion than fixed-points. Such dynamic attractors can be learned by biologically plausible learning-rules and support associative retrieval. Our results suggest a link between the properties of learning-rules and those of network-level memory representations, and point at experimentally measurable signatures.

Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.nature.com/articles/s41467-019-12306-2 Abstract (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12306-2

Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/

DOI: 10.1038/s41467-019-12306-2

Access Statistics for this article

Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie

More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().

 
Page updated 2025-03-19
Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12306-2