The role of highly oxygenated organic molecules in the Boreal aerosol-cloud-climate system
Pontus Roldin (),
Mikael Ehn,
Theo Kurtén,
Tinja Olenius,
Matti P. Rissanen,
Nina Sarnela,
Jonas Elm,
Pekka Rantala,
Liqing Hao,
Noora Hyttinen,
Liine Heikkinen,
Douglas R. Worsnop,
Lukas Pichelstorfer,
Carlton Xavier,
Petri Clusius,
Emilie Öström,
Tuukka Petäjä,
Markku Kulmala,
Hanna Vehkamäki,
Annele Virtanen,
Ilona Riipinen and
Michael Boy
Additional contact information
Pontus Roldin: Lund University
Mikael Ehn: University of Helsinki
Theo Kurtén: University of Helsinki
Tinja Olenius: Stockholm University
Matti P. Rissanen: University of Helsinki
Nina Sarnela: University of Helsinki
Jonas Elm: Aarhus University
Pekka Rantala: University of Helsinki
Liqing Hao: University of Eastern Finland
Noora Hyttinen: University of Oulu
Liine Heikkinen: University of Helsinki
Douglas R. Worsnop: University of Helsinki
Lukas Pichelstorfer: University of Helsinki
Carlton Xavier: University of Helsinki
Petri Clusius: University of Helsinki
Emilie Öström: Lund University
Tuukka Petäjä: University of Helsinki
Markku Kulmala: University of Helsinki
Hanna Vehkamäki: University of Helsinki
Annele Virtanen: University of Eastern Finland
Ilona Riipinen: Stockholm University
Michael Boy: University of Helsinki
Nature Communications, 2019, vol. 10, issue 1, 1-15
Abstract:
Abstract Over Boreal regions, monoterpenes emitted from the forest are the main precursors for secondary organic aerosol (SOA) formation and the primary driver of the growth of new aerosol particles to climatically important cloud condensation nuclei (CCN). Autoxidation of monoterpenes leads to rapid formation of Highly Oxygenated organic Molecules (HOM). We have developed the first model with near-explicit representation of atmospheric new particle formation (NPF) and HOM formation. The model can reproduce the observed NPF, HOM gas-phase composition and SOA formation over the Boreal forest. During the spring, HOM SOA formation increases the CCN concentration by ~10 % and causes a direct aerosol radiative forcing of −0.10 W/m2. In contrast, NPF reduces the number of CCN at updraft velocities
Date: 2019
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.nature.com/articles/s41467-019-12338-8 Abstract (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12338-8
Ordering information: This journal article can be ordered from
https://www.nature.com/ncomms/
DOI: 10.1038/s41467-019-12338-8
Access Statistics for this article
Nature Communications is currently edited by Nathalie Le Bot, Enda Bergin and Fiona Gillespie
More articles in Nature Communications from Nature
Bibliographic data for series maintained by Sonal Shukla () and Springer Nature Abstracting and Indexing ().